Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6495 -
Telegram Group & Telegram Channel
📌 Промт дня: анализ важности признаков после обучения модели

После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.

Это помогает:
— интерпретировать модель,
— упростить её (feature selection),
— обнаружить «лишние» или дублирующие признаки.

Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:

— Извлеки и отсортируй признаки по степени важности.
— Построй barplot с топ-10 признаками.
— Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить.
— Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию.
— Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?


Рекомендованные инструменты:
model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM
eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации
seaborn.barplot, matplotlib — для наглядных графиков

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6495
Create:
Last Update:

📌 Промт дня: анализ важности признаков после обучения модели

После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.

Это помогает:
— интерпретировать модель,
— упростить её (feature selection),
— обнаружить «лишние» или дублирующие признаки.

Промт:

Проанализируй важность признаков обученной модели. Выполни следующие шаги:

— Извлеки и отсортируй признаки по степени важности.
— Построй barplot с топ-10 признаками.
— Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить.
— Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию.
— Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?


Рекомендованные инструменты:
model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM
eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации
seaborn.barplot, matplotlib — для наглядных графиков

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6495

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from de


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA